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Abstract

Reproducing Kernel Hilbert Spaces (RKHS) are spaces of functions with properties
that make them useful in a number of applied settings. In this paper I derive the central
results of RKHS theory starting from a low level, along the way drawing connections
to geometry and providing simple examples in Euclidean space. I then offer a brief
overview of the statistical learning theory framework for machine learning and motivate
the technique of regularization via a penalty term. Finally, I describe the connection
between RKHS and regularization, and show how RKHS theory can reduce regular-
ized empirical risk minimization problems over infinite dimensional function spaces to
tractable, finite dimensional problems via the representer theorem.
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1 Introduction

This thesis is an exploration of Reproducing Kernel Hilbert Spaces and their applica-
tion via kernel methods to machine learning. Section 2 offers a concise overview of RKHS’
mathematical context, including Hilbert spaces, orthogonality, and linear functionals. This
discussion culminates in the Reisz representation theorem, a fundamental functional analy-
sis result which is the precursor to RKHS. The discussion is geared to readers with courses
in linear algebra and real analysis under their belts, along with a bit of knowledge about
metric spaces, normed spaces, inner product spaces, and so on.

In Section 3, I introduce RKHS and derive the core results which characterize them.
Section 3.4 is a discussion of RKHS in finite dimensions intended to make these results
intuitively accessible. Connections are made to geometry. Proofs, notation, and examples
are chosen to make the chapter as transparent as possible.

Section 4 introduces the framework of statistical learning theory, along with such con-
cepts as Empirical Risk Minimization (ERM), instability, and regularization. No results
from Statistical Learning Theory are explored in depth, and the treatment of instability
and regularization is confined to intuitive motivation rather than formal derivation from
the ERM framework; the purpose is to lay just enough groundwork to give the reader an
understanding of how the class of penalty regularized ERM problems arise, why they’re
important, and how they may be posed naturally in the RKHS context.

Finally, Section 5 makes this connection explicit. First I discuss the formal relation
between regularization terms and RKHS norms and state the regularized ERM problem in
RKHS. To cap off the paper I prove the celebrated Representer Theorem, an indispensable
theoretical tool for machine learning which reduces the problem with which we’re concerned
from an intractable search through infinite dimensional function space to optimization over
a finite number of coefficients.

Appendix A attempts to ground the theory of the paper in a practical setting, explaining
notation and terminology which is often used in the machine learning literature due to
kernel methods’ historical development.

2 Preliminaries

In order to understand RKHS, we need to develop some tools. We’ll assume that the
reader has some familiarity with metric spaces, normed spaces, and inner product spaces,
along with basic topological concepts like continuity and completeness. We’ll very briefly
introduce Hilbert spaces and orthogonality. The purpose of this chapter is to exhibit the
character of Hilbert spaces’ duals and to build a bit of intuition by relating them to familiar
concepts from linear algebra.
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2.1 Hilbert Spaces

Definition 2.1. An inner product space is a vector space V on a field F equipped
with an inner product ⟨·, ·⟩ : V × V → F satisfying the following three properties for all
x, y, z ∈ V and a, b ∈ F :

• ⟨x, y⟩ = ⟨y, x⟩ (conjugate symmetry),

• ⟨x, x⟩ > 0 for all x ̸= 0 (positive definiteness),

• and ⟨ax+ by, x⟩ = a⟨x, z⟩+ b⟨y, z⟩ (linearity).

The canonical example of an inner product space is Euclidean space Rn equipped with
the dot product ⟨x⃗, y⃗⟩ =

∑n
i=0 xiyi. Just as the dot product measures how much one vector

“lies along” another, inner products are often thought of as measuring the similarity, in
one sense or another, between two vectors.

All inner product spaces are normed linear spaces. The norm induced by an inner
product on a space V is ||v||V =

√
⟨v, v⟩V .

Definition 2.2. A Hilbert Space is an inner product space that is complete with respect
to the norm induced by the inner product.

Hilbert spaces allow us to generalize geometrically-informed methods from linear alge-
bra and calculus from finite Euclidean space to potentially infinite-dimensional spaces, for
instance spaces of functions.

2.2 Orthogonality

One of the most useful concepts arising in the study of inner product spaces is that of
orthogonality between vectors, which generalizes the Euclidean notion of perpendicularity.

Definition 2.3. Two vectors u, v in an inner product space are said to be orthogonal if
⟨u, v⟩ = 0.

We will often want to talk about orthogonality between sets.

Definition 2.4. The orthogonal complement A⊥ of a set A in an inner product space
V is the set of vectors which are orthogonal to each vector in A:

A⊥ ≡ {v ∈ V : ⟨v, a⟩ = 0 for all a ∈ A}.

Colloquially, A⊥ is said to “take A to zero.” A fundamental fact about Hilbert spaces
which we will use in several proofs throughout this paper is that any element can be written
as the sum of one element from a closed subspace and one from its orthogonal complement.
This is called orthogonal decomposition.
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Theorem 2.1 (Orthogonal Decomposition Theorem). If H is a Hilbert space and S is a
closed subspace of H, then

H = S ⊕ S⊥1

A full treatment of very rich topic of orthogonality in Hilbert spaces is not the purpose
of this thesis, but a good discussion can be found (along with a proof of Theorem 2.1) in
section 7.2 of [2].

2.3 Linear Functionals

The Hilbert spaces that we’re interested in are spaces of functions, so we’ll frequently need
to consider maps in which the domain is a function space (“functions of functions”). These
are often referred to as operators, although this term can be used more generally to refer
to functions with any kind of vector domain. When an operator’s output is a scalar–the
codomain is C or R–we call that operator a functional.

Definition 2.5. A map Λ : X → R on a normed vector space X is called a linear
functional if Λ(αf + βg) = αΛ(f) + βΛ(g) for all scalars α, β and f, g ∈ X.

The space of all linear functionals on a normed vector space X is referred to as the
dual space of X, sometimes denoted X∗. The elements of X∗ might be called “covectors”
– sound familiar?

Example 2.1. Consider our favorite old vector space: Rn. Recall from linear algebra that
any element x⃗ ∈ Rn may be represented as a linear combination of basis vectors ei,

x⃗ =
n∑

i=1

aiei.

So for any linear functional f : Rn → R,

f(x⃗) = f

(
n∑

i=1

aiei

)
=

n∑
i=1

aif(ei).

But each f(ei) is just a real number, and the sum on the right is the dot product of
x⃗ with the vector y⃗ = (f(e1), f(e2), ..., f(e3)). We have shown that every linear functional
on Rn – every element of the dual space Rn∗– corresponds to a vector x⃗′ ∈ Rn, that is, for
every f ∈ Rn∗,

f(x⃗) = x⃗ · y⃗
1⊕ is the “direct sum,” which here really just means that S ∩ S⊥ = ∅ and any element in H may be

written as a sum of one from S and one from S⊥.
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for all x⃗ ∈ Rn. This result might seem trivial, but the underlying concept ends up being
quite profound when extended to more exotic vector spaces. The Reisz Representation
Theorem (2.3) is a generalization of this result to Hilbert spaces in general.

Definition 2.6. A linear functional is bounded if there exists a finite constant C such
that |Λ(f)| ≤ C||f ||X for all f ∈ X.

This is equivalent to saying that |Λ(f)|
||f || ≤ C; the ratio of the norm of Λ(f) to the norm

of f in X is bounded by a constant. This ensures that the value of the functional for some
function is in some sense “anchored” to the norm of the function.

Example 2.2. Consider the Lesbesgue space L2[0, 1] and let Λx(f) be the evaluation
functional of x ∈ [0, 1], so that Λx(f) = f(x).2 Consider the sequence of functions defined
by

gn(x) =

{
a 0 ≤ x < 1

n
0 1

n ≤ x ≤ 1

for some a ̸= 0. Notice that L0(gn) = a for all n ∈ N, but C||gn||X = C(
∫
g2n)

1
2 → 0.

Another way to say this is that |L0(gn)|
||gn||X is unbounded as n → ∞. L0 is not bounded.

Figure 1: gn(x).

Example 2.3. Let B⃗(x⃗) be any linear operator between finite-dimensional normed spaces,
B : N → M , where dimN = n and dimM = m. As in Example 2.1, any x⃗ ∈ N may be
written as a linear combination of basis vectors x⃗ =

∑i=n
i=1 aie⃗i, so by the linearity of B,

2Since the elements of L2 are in fact equivalence classes of functions rather than functions themselves,
defining point evaluation functionals doesn’t really make sense. However, this example nicely demonstrates
the intuition behind what it means for point evaluation to be unbounded relative to a norm, so we’ll just
ignore this incoherence for the sake of pedagogy.
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||B⃗(x⃗)||M =

∣∣∣∣∣
∣∣∣∣∣B⃗
(

i=n∑
i=1

aie⃗i

)∣∣∣∣∣
∣∣∣∣∣
M

≤
n∑

i=1

|ai| ||B⃗(e⃗i)||M .

Let M = maxi∈1,...,n{||B⃗(e⃗i)||M}. Then

||B⃗(x⃗)||M ≤ M
i=n∑
i=1

|ai|

The quantity
∑i=n

i=1 |ai| is the L1-norm of x⃗ relative to the particular basis we have
chosen. Using without proof the fact that all norms on a finite-dimensional vector space
are equivalent [23], we get

||B⃗(x⃗)||M ≤ M′||x⃗||N .

B is a bounded operator.

This notion of boundedness is slightly different in character and behavior from the one
we’re used to. In the context of linear functionals, boundedness is identical to continuity.

Proposition 2.2. For a linear functional Λ : X → C on a normed vector space X the
following are equivalent:

1. Λ is continuous

2. Λ is continuous at 0

3. Λ is bounded

Proof. (1) ⇒ (2): by definition.
(2) ⇒ (3): Since Λ(α0 + βy) = αΛ(0) + Λ(βy) = Λ(βy) for all α, Λ(0) = 0. If Λ is

continuous, then there exists a δ > 0 such that if ||x|| ≤ δ, |Λ(x)| < 1. Then,

|Λ(x)| =
∣∣∣Λ( ||x||

δ · δ
||x|| · x

)∣∣∣
=
∣∣∣ ||x||δ · Λ

(
δ

||x|| · x
)∣∣∣ .

Notice that
∣∣∣∣∣∣ δ

||x|| · x
∣∣∣∣∣∣ = δ · ||x||

||x|| = δ ≤ δ, so Λ
(

δ
||x|| · x

)
< 1 and

|Λ(x)| ≤ ||x||
δ

.
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This is the definition of boundedness with C = 1/δ.
(3) ⇒ (1): Let Λ be bounded, so that |Λ(x)| ≤ C||x|| for all x ∈ X. Let ϵ > 0.
Assume that ||x − x′|| < δ = ϵ/C. Then by boundedness, |Λ(x − x′)| ≤ C||x − x′|| <

C · δ = ϵ. But by linearity |Λ(x− x′)| = |Λ(x)− Λ(x′)|, so |Λ(x)− Λ(x′)| < ϵ.

2.3.1 The Reisz Representation Theorem

We have hinted that there is a correspondence between a Hilbert space H and the corre-
sponding dual space of linear functionals defined on H. This correspondence is critical for
our purposes, and partly captured by the following theorem.

Theorem 2.3 (Reisz Representation Theorem, [1], p. 17). Every bounded linear
functional L on a Hilbert space H is associated with a unique element k ∈ H such that

L(f) = ⟨f, k⟩

for all f ∈ H.

Proof. If L = 0 everywhere in H, then we can simply set k = 0. Otherwise, let

Z ≡ {f ∈ H : L(f) = 0} = L−1(0).

A few observations:

(i) Z is a vector subspace of H by L’s linearity.

(ii) The topological characterization of continuity implies that Z = L−1(0) is closed since
the point 0 is compact.3

(iii) Z ̸= H since L ̸= 0.

We’re going to construct the k we’re looking for out of an element from Z’s orthogonal
complement. Z is a closed subspace of H by (i) and (ii), so Theorem 2.1 asserts that
H = Z ⊕ Z⊥. Together with (iii), this means that Z⊥ ̸= ∅.

We can thus start by choosing some nonzero z ∈ Z⊥. We’re free to assume that L(z) = 1
since we can always rescale the bounded linear operator L. Now consider an arbitrary f ∈ H
and let v = L(f)z− f . Notice that L(v) = L(L(f)z− f) = L(f)L(z)−L(f) = 0, so v ∈ Z,
and is thus orthogonal to z (remember, z ∈ Z⊥). We have shown that

L(f)z − f ⊥ z
⇒ ⟨L(f)z − f, z⟩ = 0.

3Recall that a continuous function may be defined as one for which f−1(O) is open whenever O is open
(and thus f−1(C) is closed whenever C is closed) [2].
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This is starting to look good! We can rearrange ⟨L(f)z − f, z⟩ = 0 to

L(f)⟨z, z⟩ − ⟨f, z⟩ = 0
⇒ L(f)||z||2 = ⟨f, z⟩
⇒ L(f) = ⟨f,z⟩

||z||2 = ⟨f, z
||z||2 ⟩.

Then the element k we are looking for is given by k = z
||z||2 . To show that k is unique,

suppose k′ satisfies L(f) = ⟨f, k′⟩ for all f ∈ H. Then

⟨f, k⟩ = ⟨f, k′⟩
⇒ ⟨f, k − k′⟩ = 0.

Since ⟨·, ·⟩ is positive definite, k − k′ = 0 and k′ = k.

Take a look back at Example 2.1. There, we said that, given any linear function f
which maps Rn to R, we can find a vector x⃗′ whose dot product imitates the action of f :
f(x⃗) = x⃗ · x⃗′. This is a simple case of the basic linear algebra theorem that any linear
transformation can be represented as multiplication by some matrix.

Here, we’re saying basically the same thing. Given any linear function L which maps
H to R, we can find a vector k ∈ H whose inner product reproduces the action of L:
L(f) = ⟨f, k⟩. This reproducing property is the key to the reproducing kernels which
we’re after.

3 Reproducing Kernel Hilbert Spaces

Now we’re ready to introduce the headliner.

Definition 3.1. A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert space
of functions in which the evaluation functional is continuous (or bounded, equivalently).

Specifically, let H be a Hilbert space of functions f : X → R. Then for each x ∈ X the
evaluation functional Lx : H → R is defined by

Lx(f) = f(x),

and H is a RKHS if Lx(f) is pointwise continuous at every f ∈ H for every x ∈ X .

Colloquially, a Hilbert space of functions is an RKHS if point evaluation is a continuous
linear functional. This means that if two functions f, g ∈ H are close in norm (||f − g||H
is small) then they must be close at every point in their shared domain X (|f(x)− g(x)| is
small ∀x ∈ X ).

As mentioned in Example 2.2, since the elements of L2 spaces are actually equivalence
classes of function modulo differences on sets of measure zero, it is not coherent to talk
about “point evaluation” as defined above in the context of L2 spaces. They are not RKHS.
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3.1 Reproducing Kernels

Definition 3.2. A function K : X × X → R is called a reproducing kernel of H if:

1. For every y ∈ X , K(·, y) ≡ Ky(·) ∈ H, and

2. For all f ∈ H and x ∈ X ,
f(x) = ⟨f,Kx⟩. (1)

Property 2 above is the reproducing property we talked about in the context of the
Reisz representation theorem (Theorem 2.3) for the special case where the linear operator
is the evaluation functional of H. That is to say, K “reproduces” the action of the evalu-
ation functional. The Reisz representation theorem thus ensures that Hilbert spaces with
continuous evaluation functionals–RKHS–have reproducing kernels. The converse is also
true, admitting an alternative definition for RKHS. This is the definition for which they
are named.

Proposition 3.1. Let H be a Hilbert space of functions on some set X . The following are
equivalent:

• H has a unique reproducing kernel.

• Point evaluation is a continuous linear functional in H, as stated in Definition 3.1.

Proof. Choose arbitrary y ∈ X . Then if K is the reproducing kernel for H,

|f(y)| = |⟨f,Ky⟩|,

which by Cauchy-Schwarz is

|f(y)| ≤ ⟨f, f⟩
1
2 ⟨Ky,Ky⟩

1
2

= ||f ||HKy(y)
1
2 = ||f ||HK(y, y)

1
2 .

K(y, y)
1
2 is just a number, so point evaluation is a bounded functional.

Now, suppose that Lx is continuous. Then the Reisz representation theorem gives us
a Kx ∈ H such that Lx(f) = f(x) = ⟨f,Kx⟩. Since Kx is itself a function in H, if we
consider the evaluation functional of some other z ∈ H, we can define

K(x, z) ≡ Lx(Kz) = ⟨Kz,Kx⟩ = Kz(x),

the reproducing kernel we were looking for.
In both directions of the proof, the uniqueness of K follows from the uniqueness of the

reproducing k in Theorem 2.3.
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3.2 Positive Definite Functions

Definition 3.3. A function F : X × X → R is positive definite if it is symmetric and
for all N ∈ N, x1, x2, ..., xN ∈ X , and a1, a2, ..., aN ∈ R,

N∑
i=1

N∑
j=1

aiajF (xi, xj) ≥ 0,

where the equality only holds if a1 = a2 = ... = aN = 0.

Note 3.1 (Notation). Following the usage in Definition 3.2, throughout this paper we
will write, for example, Kx = Kx(·) ≡ K(·, x). This hints at the conceptual relationship
between the function Kx(·) when X has infinite cardinality and the column vector K⃗x when
X has finite cardinality (in which case K may be thought of simply as a matrix), a topic
which will be discussed in Section 3.4.

Positive definite functions have a bijective correspondence with RKHS. This is often
viewed as the key fact of RKHS theory, leading to its characterization as a transform
theory.

Theorem 3.2 (Moore-Aronszajn Theorem, ([4], p. 344), ([5], p. 2-3)). To every
RKHS there corresponds a unique positive definite kernel, and every positive definite func-
tion is the unique reproducing kernel for some RKHS.

Proof. Given a RKHS H, Proposition 3.1 tells us that H possesses a unique reproducing
kernel K. This kernel is positive definite, because∑N

i=1

∑N
j=1 aiajK(xi, xj) =

∑N
i=1

∑N
j=1 aiaj⟨Kxi ,Kxj ⟩H

=
〈∑N

i=1 aiKxi ,
∑N

j=1 ajKxj

〉
H
=
∣∣∣∣∣∣∑N

i=1 aiKxi

∣∣∣∣∣∣2
H

and inner products are positive definite.
More profoundly, every positive definite function K : X × X → R is the unique repro-

ducing kernel for some corresponding RKHS HK of functions f : X → R. To construct
this space, we’ll start with the set F of all functions of the form

f(·) =
∑
i

aiK(·, xi), (2)

that is, arbitrary linear combinations of K. Since K is positive definite, we can define the
inner product

⟨f, g⟩F =

〈∑
i

aiK(·, xi),
∑
j

bjK(·, xj)

〉
F

≡
∑
i

∑
j

aibjK(xi, xj),
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which induces the norm

||f ||F =

∣∣∣∣∣
∣∣∣∣∣∑

i

aiK(·, xi)

∣∣∣∣∣
∣∣∣∣∣
2

F

≡
∑
i

∑
j

aiajK(xi, xj)

and forms an inner product space. The positive definiteness and symmetry of K makes
these expressions satisfy the definitions of inner product and norm.

While this set of functions4 is not yet a Hilbert space, we can complete it by adding to
F the pointwise limits of Cauchy sequences contained in F . The set already satisfies the
reproducing property by construction, which we can use to show that norm convergence of
any sequence fn ∈ F implies pointwise convergence:

|fn(x)− fm(x)| = |⟨fn − fm,Kx⟩F | ≤ ||fn − fm||F ||Kx||F ,

which is basically the boundedness of point evaluation. Thus the limit of any Cauchy se-
quence will be well-defined as a pointwise limit, which also guarantees that the reproducing
property carries over to the completion.

3.3 Kernel Functions

Let us summarize our discussion of RKHS theory to this point. We have established a
bijective correspondence between spaces with continuous evaluation functionals and spaces
with reproducing kernels. We have also established that positive definite functions and
reproducing kernels are one and the same thing; every positive definite function is the
unique reproducing kernel for some RKHS, and every reproducing kernel is a positive
definite function. For the rest of this paper, then, we might refer to kernel functions: the
bivariate functions which form the core characterization of RKHS, which we know to be
positive definite, symmetric, and in possession of the reproducing property.

The connection between a RKHS and its kernel function is quite deep. As we saw
in the proof of Theorem 3.2, every RKHS is the completion of the span of the kernel.
Therefore, any function in an RKHS may be expressed as a linear combination of kernels
or the pointwise limit of a sequence of such linear combinations.

3.4 Finite-dimensional RKHS

In order to understand the preceding discussion of RKHS theory, it will help to consider
the case in which H ⊆ Rn. As summarized in Section 3.3, the theory we’ve developed so
far describes a correspondence between positive definite kernel functions and RKHS. How
does this correspondence look in finite dimensions?

4Specifically, F is a linear manifold [5].
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First we have to decide what the underlying domain X even is and figure out how
we can think of elements of Rn as functions. There’s an easy, canonical correspondence
between v⃗ = (v1, v2, ..., vn)

T ∈ Rn and functions f : {1, 2, ..., n} → R. Simply let f(i) = vi.
So we may think of Rn as a Hilbert space of real-valued functions on X = {1, 2, ..., n}.

Remark 3.1. If X is any set of finite cardinality n, then the set H of functions f : X → R
may be thought of as a subpsace of Rn in the same style. So while we use the language
of Euclidean space, this discussion can actually be generalized to all spaces of functions
f : X → R with finite X .

Now, consider an inner product space V ⊆ Rn. Since all finite dimensional normed
spaces are complete, V is a Hilbert space. In fact, since elements of V are vectors v ∈ Rn,
the evaluation functionals from Definition 3.1 just index these vectors: Li(v) = vi. Li is
clearly continuous (for a proof see Example 2.3), so V is also a RKHS. In Rn, inner product
spaces, Hilbert spaces, and RKHS are all the same thing.

This equivalence is illustrated by the following proposition.

Proposition 3.3. A function ⟨·, ·⟩ : Rn×Rn → R is an inner product for a space V ⊆ Rn if
and only if there exists a symmetric, positive definite matrix M such that ⟨v1, v2⟩ = vT1 Mv2
for all v1, v2 ∈ V .

This follows from the fact that linear transformations in Euclidean space can be repre-
sented by matrices. Therefore, the linear transformation from Rn×Rn → R represented by
an inner product corresponds to a matrix, which must be symmetric and positive definite
since inner products are symmetric and positive definite.

How does the M corresponding to the inner product relate to the kernel of the space?
Applying Definition 3.2 to the finite case,

Definition 3.4 (Kernels of Finite RKHS). The kernel of an inner product space V ⊆ Rn

is the unique n× n matrix K with columns Ki such that:

• For all i ∈ [n] = {1, ..., n}, Ki ∈ V and

• for all v ∈ V and i ∈ [n], ⟨v,Ki⟩ = vi.

The reproducing property can then be written

⟨v,Ki⟩ = vTMKi = vi
⇒ M−1(vT )−1vi = Ki

⇒ M−1
i = Ki,

which is to say that K = M−1. The idea is that the kernel function is intrinsically
connected to, and arising from, the inner product of the space. This is true in infinite
dimensions, as well: property 2 of Definition 3.2 encodes this fact. The explicit story is a
bit more complicated, but the connection persists.
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Example 3.1 ([17], p. 12). Let K =

[
1 0
0 0

]
. Every vector in the inner product space VK

corresponding to K may be written

v =
∑

i aiK(·, xi)
=
∑

i aiK1 +
∑

i aiK2

=
∑

i ai

[
1
0

]
+
∑

i ai

[
0
0

]
VK = span([1, 0]T , [0, 0]T ) with inner product ⟨v1, v2⟩VK

= vT1

[
1 0
0 0

]
v2, making VK the

plane in R2 with v2 = 0.

What we have been discussing is a bijective correspondence between positive definite
matrices and inner product spaces in Rn. Basic linear algebra tells us that two vector
subspaces U and V of Rn having the same dimension are isomorphic, that is, there exists a
structure-preserving bijection between the two spaces. However, if the inner products of U
and V differ, then they will have different kernels. This difference tells us about the partic-
ular ways U and V are embedded within larger Euclidean space Rn, that is, their extrinsic
geometry. From one perspective, what’s valuable about kernels is that they completely
encode information about an inner product space’s intrinsic and extrinsic properties. If we
know a vector v ∈ V where V ⊆ Rn is an inner product space, then RKHS theory allows
us to write v as a linear combination of kernels–that is, as a vector in Rn, capturing v’s
extrinsic properties. For more discussion of this topic, see [17]. The characterization of
RKHS arising from the kernel captures completely and elegantly properties of how RKHS
are embedded in a larger function space, and it may be argued that this is in some sense
the “proper” way to view RKHS.

3.5 Examples

Example 3.2 (Euclidean Space). Consider H = Rn. There are exactly n evaluation
functionals, L1(x⃗) = x1, L2(x⃗) = x2, and so on. To find the kernel, we need there to be
K⃗i ∈ Rn such that

Li(x⃗) = xi = ⟨x⃗, K⃗i⟩.

This is cleary satisfied by the canonical basis vector K⃗i = e⃗i, the vector with zeros in
every index but i. The reproducing kernel of Rn satisfiesK(i, j) = 1 if i = j andK(i, j) = 0
if i ̸= j. It’s the identity matrix.

Example 3.3 (Bergman Space). A Bergman space is a particular kind of subspace of a
Lebesgue space with complex domain.5 For example, as described in [1], the Bergman

5Specifically, the domain must be an open and connected subset of C [22].
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space L2
a(D) on the unit disk D = {z ∈ C : |z| < 1} consists of all analytic functions on D

such that ∫
D
|f(z)|2dA < ∞.

That is, L2
a(D) consists of the square-integrable analytic functions on D. That makes

it the subset of L2(D) which contains only analytic functions, hence the notation.

Theorem 3.4. L2
a(D) is a reproducing kernel Hilbert space.

We won’t offer a proof of this fact, but we’ll sketch out a few results which are necessary
to the proof and show why the evaluation functionals of this space are bounded.

One key result from complex analysis known as Cauchy’s integral formula, a good
exposition of which can be found in [3], can be extended relatively easily6 to provide an
analogy of the mean value theorem on the real line for analytic functions on a disk:

Proposition 3.5. For an analytic function f in a closed disk B(a,R),

f(a) =
1

πR2

∫
B(a,R)

f dA

This asserts that the value of f at the center of the disk is proportional to the area
integral of f on the disk. It also equips us to to place a relative upper bound on the
pointwise evaluation of a function f ∈ L2

a(D).

Corollary 3.5.1. Let x ∈ D and f ∈ L2(D). Then

|f(x)| ≤ 1

1− |x|
||f ||L2

a(D)

for every f ∈ D.

The details of the proof are also in [1]; the thrust is to start with Proposition 3.5

and use Hölder’s inequality to relate
∣∣∣∫B(x,R)

f dA
∣∣∣ with (∫D |f |2dA

)2
= ||f ||L2

a
(D). This

result is necessary to prove that L2
a(D) is a Hilbert space at all, but it’s important to us

because we’ve just placed an bound on the evaluation functional Lx of L2
a(D) with respect

to || · ||L2
a(D), proving that the evaluation functional is bounded. If L2

a(D) is a Hilbert space
(a fact which we’ll state without proof), then, it’s also a RKHS.

The reproducing kernel for L2(D) is given by Kx(y) =
1

(1−yx)2
[20], which can be verified

by showing that ⟨f,Kx⟩ =
∫
D

f(y)
(1−yx)2

dA
π = f(x) using Proposition 3.5.

6See page 9 of [1].
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4 Statistical Learning Theory

4.1 The Learning Problem

Suppose there is a set of variables X associated probabilistically with some variable Y .
Each element in X is not associated uniquely with an element of Y ; rather, each element
of X determines a probability distribution on Y . We have a probability distribution P (z)
on Z = X × Y . We can write P (z) = P (x, y) = P (x)P (y|x), that is, P (z) is the product
of the marginal probability of x with the conditional probability of y given x. Since we’re
posing a learning problem, we’ll take this P (z) to be unknown. We’d like to be able to
“predict” values in Y given data in X.

Now, imagine we have a set S of samples drawn independently from this underlying
distribution. Given any x ∈ X, we’d like to be able to predict the value of y ∈ Y most
likely associated with that x. This is the problem of supervised learning. A learning
algorithm looks at the training set S and determines a function which can be used to make
a prediction ŷ given some new, previously unseen data xnew:

ŷ = fS(xnew).

Hopefully, we can “train” our function on our training data S to produce an estimator
function fS which is good at predicting values it hasn’t seen before: an fS which generalizes
well.

We pick our function fS from a set of candidates which we’ll call a hypothesis space
H. In order to choose fS , we need some way of measuring how good any arbitrary function
f ∈ H is at predicting y given x. We do this by comparing the predictions f(x) with the
true values y using a loss function V (f(x), y). Throughout this paper, we’ll assume that
V : R2 → R. This is a common assumption, but need not always be the case, e.g. for
categorical, nonbinary Y . V is similar in concept to a metric; for example, it might be the
L2-loss,

V (f(x), y) = (f(x)− y)2,

or the L1-loss,

V (f(x), y) = |f(x)− y|.

Now, we’re interested in minimizing the “distance,” as measured by our loss function,
between the relationship described by our estimator and the true relationship P (x, y). This
is called the expected risk :

I(f) ≡
∫
X,Y

V (f(x), y)P (x, y)dxdy.

The ideal estimator fideal minimizes the expected risk:
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fideal(x) = argmin
f∈H

I(f).7

The expression for I(f) contains P (x, y), which we’ve assumed was undefined. Thus,
we are unable to find fideal in practice. Instead, we’ll approximate the expected risk using
our training data S. If S = z1, z2, ..., zN = (x1, y1), ..., (xN , yN ), then the empirical risk
functional is:

IS(f) ≡
1

N

N∑
i=1

V (f(xi), yi), (3)

and the empirical risk minimization (ERM) problem is to find:

argmin
f∈H

IS(f). (4)

Much of statistical learning theory seeks to answer the question of when the minimizer
of the empirical risk is a good approximation for the minimizer of expected risk. Formally,
under what conditions does

lim
N→∞

IS(f̂S) = lim
N→∞

I(f̂S) = I(fideal),

where f̂S is the minimizer of the empirical risk on the training set S. Good answers to
this question have been found under pretty general conditions, and constitute much of the
work of Vapnik in developing the modern field of statistical learning theory [10]. A good,
more recent overview can be found at [9]. Treating this material properly is not within
the scope of this paper; instead, we’ll introduce a class of models which arises from the
theory of ERM, and consider what happens when we consider these models in the context
of RKHS.

4.2 Regularization

This is the most informal section of the paper, but it serves the important purpose of
building intuition as to why we’re interested in a particular class of problems (to be in-
troduced in Section 4.2.2) which modify Equation 4. A formal discussion of regularization
would take us too far afield and is too tangentially related to the RKHS material we’re
interested in to be included. Instead, we’ll discuss these issues just enough to build an
intuitive picture of how the class of optimization problems we’re interested in arises.

7The “argmin” function indicates that we’re seeking the argument f which minimizes the functional IS .
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4.2.1 Ill-Posed Problems

A problem is considered well-posed [19] if it satisfies three conditions:

1. The solution exists.

2. The solution is unique.

3. The solution is stable, that is, it depends continuously on the initial conditions.

In a general hypothesis space, the ERM problem (4) is ill-posed [24]. We won’t go into
all the ways these conditions can be violated, nor will we rigorously describe the conditions
under which they are satisfied. Instead, we’ll give an example drawn from [24] of a case
where condition 3 is violated.

Consider a training set of 10 points as shown on the left in figure 2. An ERM algorithm
restricted to polynomials of degree nine might return the estimator function shown on the
right, with zero empirical error.

Figure 2: Left: a training set of 10 observations. Right: a degree-9 polynomial estimator.

However, if we perturb the training data just slightly, in order to fit a polynomial with
zero empirical error the algorithm will have to return the function shown by the dotted
blue line on the right of Figure 3.

In this case, ERM reduced our empirical risk to zero. However, tiny changes in our
input data caused the estimator to change quite dramatically. The solutions to ERM
are unstable if our hypothesis space consists of polynomials of degree 9. This instability
corresponds to discontinuous dependence of the minimizer f̂S of the functional IS(f) on
the training set S. For stability, we need the linear functional IS : X × Y → H to be
bounded. In this case, it is not, and the ERM problem (4) is ill-posed.
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Figure 3: Left: the training set slightly perturbed. Right: a much different fit.

In Figure 4, we manually restrict our hypothesis space to polynomials of degree 2.
ERM is no longer able to fit a curve with zero empirical risk, but we solve the problem of
instability.

Figure 4: Left: a quadratic fit to the training set. Right: a quadratic fit to the perturbed
training set.

There’s a fundamental trade-off between model bias, how well a model matches the
training set, and model variance, how much the model changes with the training data.
Formally, balancing bias and variance corresponds to ERM on a stable problem.
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4.2.2 Adding a Penalty Term

The example in the last section may also be thought of as a trade-off between model
complexity and model stability. What we saw is that if we restrict our attention to a less-
complex subspace (the space of second degree polynomials) of the full hypothesis space,
then we can sidestep the issue of instability.

Instead of solving the original ERM problem (Equation 4), we can add a “cost” for
complexity, represented by a penalty term P (f). Our new optimization problem is:

argmin
f∈H

[
1

N

N∑
i=1

V (f(xi), yi) + λP (f)

]
, (5)

where H is the space of functions for which P (f) is defined. Equation (5) turns out to
be useful in a very wide range of settings [14]. While we’re stopping short of an in-depth or
rigorous discussion here, what’s key is that the introduction of the penalty term limits the
possible minimizers (which we’ll take as our estimator function), and therefore can avoid
the kind of instability that we saw in Figure 3–what is sometimes called the problem of
overfitting. A rigorous theoretical justification of regularized ERM as seen in Equation 5,
how problems of this form come to be well-posed, may be found at [9].

5 Regularization and RKHS

5.1 RKHS and Smoothness

As discussed in the last section, the goal of regularization is ultimately to state empirical
risk minimization as a well-posed problem. In particular, we’re focused on ensuring that
the minimizer found depends continuously on the training data. One way to accomplish
this is by explictly restricting the hypothesis space, and another (more popular) way is to
add a penalty term which encodes a preference for functions which are “smoother” or “less
complex,” though these ideas may be defined in a number of different ways [6].

No matter how we’re formalizing our notion of smoothness,8 however, it always has to
do with point evaluation, since our training set S consists of particular points in X × Y .
Every definition of smoothness must relate directly to the values of the candidate functions
f at each point in X , or else it’ll be meaningless in the ERM setting. Also, in order to induce
a preference for some functions in H we need to be able to compare them and evaluate their
similarity, which we accomplish via an inner product and its norm. All of this is to say, we
need point evaluation f(x) of functions f ∈ H to be bounded with regard to their norm
||f ||H. This is exactly the requirement that point evaluation be continuous in Definition

8Throughout this discussion we’ll use the word “smoothness” to refer to the quality penalized by J(f).
Note that this property does not always correspond to smoothness in the formal sense, and might therefore
be referred to as, for example, “flatness” or “complexity” in other contexts.
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3.1; which is to say that the appropriate space in which to conduct regularization via a
loss-penalty formulation is a RKHS. The penalty term would not be able to meaningfully
compare the smoothness of functions across their entire domain without an inner product
and the continuity of point evaluation functionals with respect to this inner product’s
norm. By the same token, RKHS may be viewed as function spaces in which smoothness
is well-defined, an idea which can be formalized [6].

5.2 Regularization Operators

With this in mind, it turns out that for most of the problems we’re interested in, the
penalty P (f) may be written as the square norm of a linear operator with its codomain in
an inner product space: P (f) = ||R(f)||2 [8] [9]. Unsurprisingly, if R is a positive definite
operator, we can find a specific kernel K corresponding to it [8].

Example 5.1 (Regularization Operators and Kernels in Rn ([13], p. 3273-3274)). In finite
dimensions, where operators are matrices, the correspondence between K and R is very
straightforward. Given R, we may define K = (RTR)−1. Then by Proposition 3.3, there’s
an inner product space VK ⊆ Rn such that for v ∈ VK , ||v||2VK

= ⟨v, v⟩VK
= vTK−1v =

vTRTRv = ||Rv||Rn .

This story is somewhat more involved in the general setting, but it draws attention to
a fact whose significance should not be missed: given a particular regularization problem,
there is a correct kernel to use. Likewise, we can choose any positive definite kernel, along
with a loss function, and pose a problem in the form of Equation 5.

From here on out, we’ll take the penalty term to be the square norm in a RKHS,
P (f) = ||f ||2HK

. Equation 5 becomes:

argmin
f∈HK

[
1

N

N∑
i=1

V (f(xi), yi) + λ||f ||2HK

]
, (6)

Recall from the construction of HK from K offered in the proof of Theorem 3.2 that
||f ||HK

is defined by ||f(x)||2HK
= ||

∑
k akK(x, yk)||2HK

≡
∑

i

∑
j aiajK(yi, yj) for some

countable set of coefficients ai and points yi ∈ X (we can see how this quantity might
correspond to the “complexity” or “smoothness” of the function f). Likewise f(x) is the
limit

∑
i aiK(x, yi), so we can write Equation 6 in terms of the kernel:

argmin
{a1,a2,...}∈RN ,{y1,y2,...}∈X

 1

N

N∑
i=1

V

∑
j

ajK(xi, yj), yi

+ λ
∑
j

∑
k

ajakK(yj , yk)

 . (7)

We have posed the class of loss-penalty ERM problems in terms of kernels. Equation 7
still isn’t tractable, however; we have no way of finding the infinite number of coefficients
ai nor the points yi which minimize the functional.
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5.3 Representer Theorem

The following theorem is the core theorem of this paper. While Section 5.1 discusses why
it is natural to restrict machine learning problems’ hypothesis spaces to RKHS, the repre-
senter theorem is the primary theoretical reason for using kernel representations explicitly
in practice. It shows that the function which minimizes Equations 6-7 may be written as
a finite linear combination of the reproducing kernels Kxi of the training points, where
arbitrary functions in HK might be represented by infinite series of reproducing kernels
of any points in X . Its first version appeared in Wahba’s 1990 classic Spline Models for
Observational Data [5], but the following form comes from Scholkopf and Smola [7].

Theorem 5.1 (Representer Theorem, ([7], p. 90-91)). Let Y be a set and V : Y ×Y →
{R ∪∞} be an arbitrary loss function. Then each minimizer f̂ of the the regularized
empirical risk

N∑
i=1

1

N
V (f(xi), yi) + λ||f ||2HK

(8)

may be represented as a finite linear combination of kernels K:

f̂(x) =

N∑
i=1

aiK(x, xi). (9)

Proof. First, any function f ∈ HK may be written as a sum of the part contained in the
span of the kernel functions on the training points x1, ..., xm and the part contained in its
orthogonal complement:

f(x) =

N∑
i=1

aiK(x, xi) + f⊥(x),

By the definition of orthogonal complement, ⟨f⊥(x),K(x, xi)⟩ = 0 for all i ∈ [N ] ≡
{1, ..., N}, x ∈ X.

By the reproducing property (Equation 1), f(xi) for each training point i ∈ [N ] may
be written in terms of reproducing kernels as

f(xi) = ⟨f(·),K(·, xi)⟩ =
〈∑N

j=1 ajK(·, xj),K(·, xi)
〉
+ ⟨f⊥(·),K(·, xi)⟩

=
∑N

j=1 ajK(xi, xj).

That is, all functions in HK , when evaluated at a training point (which may be any
point in the domain X!), are equal to a linear combination of the kernel evaluated at the
training points.
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Also, notice that for any function f ∈ HK ,

||f ||2HK
=

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

aiK(·, xi)

∣∣∣∣∣
∣∣∣∣∣
2

HK

+ ||f⊥||2HK
≥

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

aiK(·, xi)

∣∣∣∣∣
∣∣∣∣∣
2

HK

.

To summarize, we can write Equation 8 in the following form:

1

N

N∑
i=1

V

 N∑
j=1

ajK(xi, xj), yi

+

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

aiK(·, xi)

∣∣∣∣∣
∣∣∣∣∣
2

HK

+ ||f⊥||2HK
,

which is clearly minimized when f⊥ = 0. Any minimizer f̂(x) of Equation 8 thus has the
form f̂(x) =

∑N
i=1 aiK(x, xi).

We’ve proven that the minimizer of Equations 6-7 is a sum of kernels on the training
points. Now we can finally rephrase the empirical risk functional as a finite-dimensional
optimization problem! Following the treatment in [14] (pp. 169) let K be the matrix
representation of K on the training set, that is, the N × N matrix with entries Kij =
K(xi, xj). Likewise, let y ∈ RN be the vector with entries (y1, ..., yN ), and a ∈ RN be the
vector with entries (a1, ..., aN ). Equation 7 can be rewritten:

argmin
a

V (y,Ka) + λaTKa.

This is a problem which can be optimized using standard numerical algorithms. We’ve
done what we set out to do–converted an intractable regularization problem into an opti-
mization problem over finite dimensions.

Remark 5.1. A message of this theorem is that arbitrarily complex functions cannot be
estimated using ERM on a finite training set; the estimated function is always confined
to a subspace of the original hypothesis space with maximum dimension N . This actually
holds whether we’re using a penalty term or not. By Theorem 5.1, the complexity of the
f̂ selected is restricted by N , regardless of what X and H look like.

6 Conclusion

The purpose of this paper is to bridge the gap between RKHS and their usage in machine
learning in an accessible, yet relatively thorough, way. To this end, in certain places I have
sacrificed rigor to avoid large detours, and throughout I have omitted significant results,
classes of examples, and so on. The connection between RKHS and statistical learning
runs quite deep; the interested reader will have no trouble extending this inquiry.
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A Support Vector Machines and Feature Maps

The narrative constructed in Sections 3-5 does not represent the historical development
of the theory relating RKHS and machine learning. Because of this, the literature on the
subject is quite scattered, and it can be difficult to relate the relatively succinct and elegant
mathematical theory of RKHS to the way kernel methods are deployed in practice. This
appendix attempts to bridge this gap via particular examples that appear in the machine
learning literature.

A.1 Support Vector Machines

Kernel methods became part of the machine learning literature as part of the development
of a class of supervised learning techniques called Support Vector Machines. In the sim-
plest case, SVMs perform binary classification via separating hyperplanes–they separate
categories of observations by drawing a line between them (Figure 5).

Figure 5: A separating hyperplane between blue and purple points in two dimenions [15].

Supposing that the input data is a vector of real numbers, X = Rn, this separating
hyperplane takes the form

f(x) = ⟨a,x⟩+ b,

where a is a vector of coefficients. That is to say, f(x) is a line.
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We want to choose the separating hyperplane that maximizes the margin between the
nearest points on either side of the line. If the data is not perfectly linearly separable,
we may want to use a “soft margin” which allows some points to lie on the wrong side of
the line. Without going into the details, this corresponds to estimating f via ERM on the
regularized risk functional

1

N

N∑
i=1

V (f(xi), yi) + λ||a||2, (10)

where yi ∈ {−1, 1} represents the color of the point and the loss function V is the hinge
loss

V (f(xi), yi) = max[0, 1− yi(⟨a,xi⟩+ b)],

pictured in Figure 6.

Figure 6: The hinge loss function plotted against the logistic regression loss function. [15].

Of course, this classification technique has the major weakness that it only works on
data that is approximately linearly separable. The earliest way around this was by prepro-
cessing the data into some feature space F , for example, if X = R2, via a feature map
ϕ : R2 → R3

ϕ((x1, x2)
T ) = (x1, x

2
1 + x22, x2)

T .
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Figure 7 shows the data as it appears in F–significantly, it’s much more linearly sepa-
rable. We’ve chosen the feature map above to make the plot look good, but the same result
can be achieved via the feature map ϕ((x1, x2)

T ) = (x21, x
2
2,
√
2x1x2,

√
2x1,

√
2x2, 1)

T .

Figure 7: Left: the data in the input space. Right: the data in the feature space.

Now, a separating hyperplane in this six-dimensional feature space can be written

f(x) = ⟨a,ϕ(xi)⟩+ b,

where a is now in R6 rather than R2. Likewise Equation 10 is now written

1

N

N∑
i=1

max[0, 1− yi(⟨a,ϕ(xi)⟩+ b)] + λ||a||2. (11)

To this point, we’ve been carrying out our feature mapping explicitly as a preprocessing
step, and that is the way this technique was invented. However, at this point we can define
a bivariate function

K(x, y) ≡ (1 +
∑2

j=1 xjyj)
2

= 1 + 2
∑2

j=1 xjyj + (
∑2

j=1 xjyj)
2

= 1 + 2x1y1 + 2x2y2 + (x1y1)
2 + (x2y2)

2 + 2(x1y1)(x2y2)

=



x21
x22√
2x1x2√
2x1√
2x2
1

 ·



y21
y22√
2y1y2√
2y1√
2y2
1

 = ⟨ϕ(x), ϕ(y)⟩R6 .

Using this clever correspondence, we can replace the inner product in Equation 11 with
a bivariate function that is much cheaper to compute. This is an example of what is called
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the kernel trick in the machine learning literature, and, historically, this is roughly how
kernel methods made their entrance into the methods of ML practicioners.

A.2 Feature Maps

Given our knowledge of RKHS, we make the observation that K(x, y) = (1 +
∑p

j=1 xjyj)
d

is a positive definite functon, generally called the polynomial kernel. It corresponds to
an RKHS HK via K(x, y) = ⟨ϕ(x), ϕ(y)⟩HK

. In fact, for any RKHS HK , we may define
the feature map ϕ : X → HK with ϕ : x 7→ K(·, x). This leads to yet another way of
understanding RKHS.

Proposition A.1 ([12], p. 2). A function K : X × X → R is a positive definite kernel
if and only if there exists a Hilbert space H and a map ϕ : X → H such that K(x, y) =
⟨ϕ(x), ϕ(y)⟩H for all x, y ∈ X .

RKHS may always be seen as mapping X into some higher-dimensional feature space of
functions of the original inputs. These features may or may not have an easily discernable
meaning in terms of the original problem, and in fact we often only reference them implicitly
via kernel representations.

In the case of the polynomial kernel K(x, y) = (1 +
∑p

j=1 xjyj)
d, HK is the space of

polynomials of degree d in Rp. This space happens to have
(
p+d
d

)
eigenfunctions, given in

Section A.1 by the ith element of the vector ϕ, which we can derive explicitly ([14], pp.
171).

Not all RKHS have such a basis, but many do (see [18]). Some sources simply assume
that our kernel has a representation in terms of linearly independent functions ϕi:

K(x, y) ≡
∞∑
i=1

γiϕi(x)ϕi(y), (12)

where γi ≥ 0 and
∑∞

i=1 γ
2
i < ∞. A function thus defined is indeed positive definite. Then

each function f(x) ∈ H can be written in terms of the eigenfunctions ϕi(x):

f(x) =

∞∑
i=1

ciϕi(x),

and the norm is

||f ||HK
=

∞∑
i=1

c2i /γi.

Then Equations 6-7 become:
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argmin
f∈H

[
N∑
i=1

V (f(xi), yi) + λ||f ||HK

]

= argmin
{ci}∞1

[
N∑
i=1

V

( ∞∑
i=1

ciϕi(x), yi

)
+ λ

∑∞
i=1 c

2
i /γi

]
.

(13)

Example A.1 ([6], Appendix A.1). Expression 12 presents a way to construct kernels and
corresponding RKHS. We’ll briefly sketch an example.

Let X = [0, 2π], and let K(x) =
∑∞

i=0 λi cos(ix), the Fourier series of a continuous,
symmetric, periodic function. Then we can use a trig identity and define

K(x, y) ≡ K(x− y) = 1 +

∞∑
i=1

λi sin(ix) sin(iy) +

∞∑
i=1

λi cos(ix) cos(iy).

This puts K(x, y) in the form of Equation 12, where

{ϕi(x)}∞i=0 = (1, sin(x), cos(x), sin(2x), cos(2x), ...),

so we can define a RKHS HK with an inner product in terms of the Fourier coefficients of
functions in HK . If developed more fully, the connections with harmonic analysis give a
very strong connection between the norm in this RKHS and the smoothness properties of
its functions.
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